Link Search Menu Expand Document

Calendar

Week 1

Sep 26
Lecture 1
HW 0 out
  • Course outline, examples of time series data
Sep 28
Lecture 2
HW 0 due HW 1 out
CQ1 out: stationarity, ACF
  • Course logistics, Models for time series data, stationarity, autocorrelation, and basic theoretical constructs
  • Reading: S&S 1.2 - 1.4

Week 2

Oct 3
Lecture 3
 
  • Estimating ACF; Data wrangling – detrending and data transformations
  • Reading: S&S 1.5, 2.2
Oct 5
Lecture 4
 
CQ1 due
  • Data wrangling cont’d – smoothing via nonparametric regression; Linear and AR(1) processes (videos – Yom Kippur)
  • Reading: S&S 2.3, 3.1

Week 3

Oct 10
Lecture 5
 
  • AR, MA, and ARMA models
  • Reading: S&S 3.1-3.2
Oct 12
Lecture 6
HW 1 due HW 2 out
CQ2 out: data wrangling, ARMA models
  • ARMA ACF and partial ACF; Best linear prediction, forecasting
  • Reading: S&S 3.3-3.4

Week 4

Oct 17
Lecture 7
 
  • Forecasting cont’d, forecasting metrics; Estimation via method of moments
  • Reading: S&S 3.4-3.5
Oct 19
Lecture 8
 
CQ2 due
  • Estimation via maximum likelihood and least squares, estimation of ARMA models; ARIMA/SARIMA models
  • Reading: S&S 3.5-3.6

Week 5

Oct 24
Lecture 9
Project Proposal due
  • ARIMA and SARIMA diagnostics and model selection; VAR models
  • Reading: S&S 3.7, 3.9, 5.6
  • Optional Reading: Lutkepohl 2.1
Oct 26
Lecture 10
HW 2 due HW 3 out
CQ3 out: forecasting, estimation of ARMA, ARIMA/SARIMA
  • VARMA models; State space models
  • Reading: S&S 6.1
  • Optional Reading: Lutkepohl 11.1-11.3 (VARMA), 3.1-3.4 (estimation), 18.2-18.2 (SSMs)

Week 6

Oct 31
Lecture 11
 
  • Filtering, smoothing, and other state space models (DLFM, HMMs)
  • Reading: S&S 6.2
  • Optional Reading: Lutkepohl 18.3
Nov 2
Lecture 12
 
CQ3 due
  • Estimation of state space models
  • Reading: S&S 6.3-6.5
  • Optional Reading: Lutkepohl 18.4; PML2 4.2, 8.1-8.4, 30.1-30.4, 31.1-31.2

Week 7

Nov 7
Lecture 13
 
  • Deep learning intro
  • Reading: PML2 16.1-16.3
  • Optional Reading: Lutkepohl 2.1
Nov 9
Lecture 14
HW 3 due HW 4 out
CQ4 out: VARMA/SSMs, filtering/smoothing, HMMs, deep learning

Week 8

Nov 14
Lecture 11
Project Midway due
  • Andy Miller (Apple) guest lecture
Nov 16
Lecture 12
 
CQ4 due
  • David Sontag (MIT) guest lecture

Week 9

Nov 28
Lecture 17
 
  • Granger causality and neural Granger causality
Nov 30
Lecture 18
HW 4 due
CQ5 out: more on RNNs/CNNs, Granger causality, GP basics

Week 10

Dec 5
Lecture 19
 
Dec 7
Poster Session
 
CQ5 due